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Abstract
With the advent of big data and big model, there
are increasing needs on training deep learning
model in distributed mode. Although the open
source deep learning software such as Tensor-
Flow and MXNet do support training deep learn-
ing model in parallel, it is still a challenging
task for data scientists to implement scalable and
high performance distributed deep learning algo-
rithms. In this paper, we share several practical
lessons on optimizing distributed deep learning
training process, including optimization strate-
gies for typical model architecture such as DNN
and CNN. For DNN, we exploit its computation-
to-communication ratio to reduce the commu-
nication overhead. For CNN, we find hybrid-
parallelism an effective way to squeeze the po-
tential of strong-scaling. Experiments in off-the-
shelf deep learning software show that, with our
optimization strategies we are able to have 10x
speed-up on AlexNet against the standard dis-
tributed implementation.

1. Introduction
In recent years, there is a trend towards solving prob-
lems in data-driven approach, such as in online advertis-
ing (Richardson et al., 2007), search engine (Yin et al.,
2016), e-commerce recommendation (Linden et al., 2003),
etc. Accumulated data play a more and more important
role in those areas since they could help predict future pat-
tern and discover implicit regulations. Also with the ad-
vance of communication technology and hardware indus-
try, more and more devices are now connecting into In-
ternet(Perera et al., 2015), which in turn generate huge
amount of data(Tsai et al., 2014).

Along with those trends, in machine learning commu-
nity, there is a track attracting more and more attention—-
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modeling problems with non-linear neural network, espe-
cially with multiple layers of neural networks. We call
those models deep learning(LeCun et al., 2015). Deep
learning actually is not a completely new stuff. In his-
tory, there are already several waves of using neural net-
work for modeling task(Rosenblatt, 1958)(Rumelhart et al.,
1988). However, at that time, there were some chal-
lenges limiting its spread(Bengio et al., 2015). Recently,
with the advances of optimization techniques(Dahl et al.,
2013)(Ioffe & Szegedy, 2015), the dedicated computation
power brought by General Purpose Graphics Processing
Unit (GPGPU)(Chetlur et al., 2014), and the breakthrough
of new models(Krizhevsky et al., 2012)(He et al., 2016),
deep learning brings significant improvement over tradi-
tional shallow models in several fields such as computer
vision(Krizhevsky et al., 2012), speech recognition(Hinton
et al., 2012), and NLP(Wu et al., 2016).

With the mixture of popularity of data-driven approach,
IoTs generating more data, advances of modeling tech-
niques and easy-to-get computation power via cheaper
GPGPUs, there are quite a lot of requirements of train-
ing deep learning with big models and big data. To ef-
ficiently support these training tasks, distributed training
system comes into our view due to that: i). Some models
are too big to fit in a single GPGPU device(Shazeer et al.,
2017); ii). Some models are so computation-intensive and
take quite a long time to train in a single GPGPU de-
vice(Wu et al., 2016). Distributed training is a suitable way
for solving the above challenges.

Recently, there are some open source deep learning soft-
ware which already provide support for distributed training,
such as MXNet(Chen et al., 2015) and TensorFlow(Abadi
et al., 2016). However, these software just provide the
primitive support for distributed training. Based on those
distributed primitives, it is still not easy to write efficient
distributed algorithm implementation, just as mentioned in
(Sutter, 2005). To be even worse, some naive distributed
implementation may be slower than the solo implementa-
tion.

In this paper, several practical lessons of optimizing
distributed deep learning are discussed. The lessons
shared here can be employed on two popular network
architectures–Convolutional Neural Network (CNN) and
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Deep Neural Network (DNN) 1. Due to the underlying dif-
ferences of those network architectures, their optimization
strategy are also somewhat different. For DNN, we exploit
its computation-to-communication ratio to reduce the com-
munication overhead. For CNN, we find hybrid-parallelism
an effective way to squeeze the potential of strong-scaling.
Experiments in off-the-shelf deep learning software show
that, with our optimization strategies we are able to have
10x speed-up on AlexNet against the standard distributed
implementation.

2. Optimization Strategies
2.1. Late-multiply

Late-multiply is an optimization strategy suitable for DNN.
DNN has densely-connected structure, so small number of
DNN hidden units could result in big number of synapses.
For distributed deep learning, this kind of structure will
bring significant communication overhead. For example,
for a fully-connected layer with N bottom hidden neurons
and K top hidden ones, it has K ∗N connecting synapses.
Let N and K both be 10000, the total synapse number be-
comes 100 million, usually 4 bytes floating-point represen-
tation is used for storing one synapse, so 400MB data need
to be communicated through network for this layer. Main-
stream network device usually has 10Gbps bandwidth, in
theory it takes at least 400ms to transmit synapses for this
single layer, which is a non-negligible overhead.

Late-multiply aims at transmitting less data for a fully-
connected layer with extra computation cost. Before dis-
cussing the core idea, let’s review the backward propaga-
tion of fully-connected layer firstly.

Backward propagation of a fully-connected layer For
a specific neuron yj of a fully-connected layer, the feed
forward process for calculating it is as following:

yj = bj +
∑
i

xiwij . (1)

For backward propagation, the key point is to compute er-
ror derivatives with regard to all the weights. Let’s take
weight wij as an example:

∂E

∂wij
=

∂yj
∂wij

∂E

∂yj
= xi

∂E

∂yj
, (2)

where E represents error derivatives passed from upper
layer.

Trade-off between computation and communication.
For training neural networks, Stochastic Gradient Descent

1In this work, we simply use DNN to represent Fully Con-
nected Neural Networks.

(SGD) algorithm is used in practice and the training data is
split into multiple mini-batches. For each mini-batch with
batch size M , number of bottom layer hidden units is N ,
number of top layer hidden units is K, bottom layer is a
M × N matrix X, error derivatives of the top layer is a
M × K matrix E, weight is a K × N matrix W. In the
back propagation stage, we update W using W = ETX
which is a matrix multiplication form of Eq. 2.

Algorithm 1 is a distributed version of backward propaga-
tion, where n is number of workers and i is worker index.
Worker 0 needs to gather W from the other workers, sums
them up and calculates the average Wavg , then Broadcast
Wavg back to other workers at last.

Algorithm 1 Distributed version of backward propagation.
Worker 0 Other workers
W0←ET

0 X0 Wi←ET
i Xi

Reduce Wi to worker 0 Reduce Wi to worker 0
Wavg ←

∑
i Wi
n do nothing

Broadcast Wavg to other workers Broadcast Wavg to other workers

During this process, the communication cost is one Reduce
operation of matrix W plus one Broadcast operation. Usu-
ally N and K are large. For example, the last two fully-
connected layers in Alexnet(Krizhevsky et al., 2012) both
have 1024 neurons. The idea of trading computation for
communication is leveraged here, as shown in Algorithm
2. The calculation of W = ETX is postponed in each
worker. Instead, matrices X and E of all workers are dis-
tributed to each other through Allgather operation. Then
each worker executes ETX n times, sums up the result and
calculates average.

Algorithm 2 Late-multiply on worker i
Allgather Xi,Ei

Wavg ←
∑

i E
T
i Xi

n

Complexity analysis. It is clear that Algorithm 2 needs
extra n− 1 times of multiplication of ETX. However, the
communication cost becomes one Allgather operation of
matrix X and E. As X is in the shape of M × N and
E is in M × K, where M , the mini-batch size, is usually
smaller than the bottom layer neuron numberN and the top
layer neuron number K. Also with the high performance
of matrix multiplication in GPGPU, the extra computation
cost is trivial.

2.2. Hybrid-parallelism

Another optimization strategy introduced is hybrid-
parallelism, which is suitable for models consisting of
both DNN and CNN layers. CNN has nice weight-
sharing network structure, so usually CNN layer has high
computation-to-communication ratio in distributed deep
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learning scenario. However, usually a deep learning
model architecture consists of both CNN and DNN, e.g.
AlexNet has 5 CNN layers followed by 3 DNN layers.
And as presented in previous section, DNN’s densely-
connected structure is unfriendly for distributed execu-
tion. To fully release the parallel potential of CNN lay-
ers, hybrid-parallelism(Krizhevsky, 2014) is a suitable so-
lution. Let’s take AlexNet to illustrate the core idea in de-
tail. AlexNet has 60 million parameters with just 650,000
neurons, consisting of five convolution layers, some of
which are followed by max-pooling layers, and three fully-
connected layers. Fully-connected layers occupy 96% of
parameters, with just 6% of training time. Naive data-
parallelism of AlexNet will meet scalability bottleneck
very quickly.

With the hybrid-parallelism mode, the convolution layers
are distributed in data-parallelism mode, while the fully-
connection layers are placed into a single computation de-
vice. So the total strategy is a mixture of data-parallelism
and model-parallelism. This strategy reduces exchanged
data significantly compared against naive data-parallelism.

Complexity analysis. Let |W | denote the weight num-
ber, |N | denote the neuron number. In AlexNet, |W ||N | '
90. With naive data-parallelism, the data exchange com-
plexity is O(|W |). With hybrid-parallelism, it is O(|N |).
This illustrates hybrid-parallelism advantages over data-
parallelism for AlexNet.

To ensure the correctness of hybrid-parallelism, several
tricks need to be taken into consideration. In Figure 1,
an abstract model is split into upper (part 2) and bottom
parts (part 1). With hybrid-parallelism, data parallelism is
used for bottom parts, and model parallelism is used for
coordinating upper and bottom parts. Tricks are expressed
based on this figure.

Figure 1. The hybrid-parallelism mode

• For distributed execution of deep learning model, gra-
dient aggregation is necessary for coordinating the be-

haviors of different computation devices. In standard
data-parallelism, gradient averaging is needed during
aggregation phase, while in hybrid-parallelism, the
aggregation phase (for bottom parts) just need to sum
up gradients rather than averaging them.

• To avoid overfitting, weight decay is a popular mech-
anism which usually acts as an additional element of
the loss function, for hybrid-parallelism, it is neces-
sary to scale the regularization coefficient of bottom
parts with an additional factor 1

m . Here m is the
replica count of bottom parts.

3. Benchmark Results
The optimization strategies mentioned in previous sec-
tions are experimented in several off-the-shelf deep learn-
ing software and convergence speed-up is observed and
reported here. We did the benchmark studies on an in-
house GPU cluster consisting of over 30 NVIDIA GPU
K40M/M40 cards with 10Gbps Ethernet or 56Gbps Infini-
Band connection support.

3.1. Late-multiply

For late-multiply strategy, we compared the time cost of
communication directly. We run Alexnet(Krizhevsky et al.,
2012) with batchsize = 256 both on 10Gbps Ethernet
and 56Gbps InfiniBand. Table 1 illustrates the experiment
results. It’s apparent that late-multiply reduces commu-
nication cost significantly It is a practical trick for neural
networks with huge fully-connected layer and small batch
size. From the result it is shown that late-multiply has bet-
ter improvement on Ethernet over InfiniBand. It is due to
that InfiniBand has RDMA support which eliminates ad-
ditional data movements between GPU memory and main
memory through PCIe. Thus the reduction of exchanged
data size could have bigger impact upon Ethernet environ-
ment.

Table 1. Comparison of communication time cost. T refers to
time cost without late-multiply and Topt refers to that with late-
multiply optimization.

10 Gbps Ethernet
1 GPU 2 GPUs 4 GPUs

T (ms) 0 894 1287
Topt (ms) 0 164 399

56 Gbps InfiniBand
1 GPU 2 GPUs 4 GPUs

T (ms) 0 90 185
Topt (ms) 0 51 136
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3.2. Hybrid-parallelism

For hybrid-parallelism, we run experiments on AlexNet
with the following considerations:

• We benchmarked on both K40M and M40 GPUs 2.
Also FFT acceleration switch was turned on. With
these settings we made the distributed optimization a
more challenging task.

• We chose single GPU implementation and naive data-
parallel implementation as two baselines to highlight
the improvement brought by hybrid-parallelism.

• We benchmarked with two kinds of input data: fake
data and real training data. Using fake data helped
eliminate the impact of data IO performance. With
real training data, we could know the realistic perfor-
mance.

M40 benchmark results are shown in Table 2, for data-
parallelism and hybrid-parallelism correspondingly. And
K40 benchmark results are provided in Table 3.

Table 2. M40 results. Tfake and Treal refer to the iteration time
with fake and real data respectively.

Data-parallelism
1 GPU 2 GPUs 4 GPUs 8 GPUs

Data size(MiB) 0 930 1861 3722
Tfake (s) 2.297 2.906 3.672 5.466
Speed-up 1X 0.79X 0.63X 0.42X
Treal (s) 2.615 2.861 3.574 5.882
Speed-up 1X 0.91X 0.73X 0.44X

Hybrid-parallelism
1 GPU 2 GPUs 4 GPUs 8 GPUs

Data size(MiB) 0 54 89 161
Tfake (s) 2.297 1.238 0.662 0.443
Speed-up 1X 1.86X 3.47X 5.19X
Treal (s) 2.615 1.500 0.831 0.552
Speed-up 1X 1.74X 3.15X 4.74X

From the benchmark results, it is clear that hybrid-
parallelism gains significant speed-up over naive data-
parallelism implementation. For M40, the gap is at least
1.9X, for K40, the gap is at least 2.17X. The best improve-
ment is 10X, for M40 in 8 GPUs setting. It is due to
that AlexNet contains over 60 million parameter, in naive
data-parallelism implementation, for each iteration, there
are 2 ∗ 232 MiB model weights/gradients to be spread over
network. For 2 GPUs, the communication data size is 930
MiB (2 gradient pull + 2 weight push). For 4 GPUs, the
communication data size just grow linearly. This signifi-
cantly impedes scalability. With our hybrid-parallelism im-
plementation, since the fully connected layers are placed

2theoretical speaking, M40 has higher TFlops than that of
K40m

Table 3. K40 results. Tfake and Treal refer to the iteration time
with fake and real data respectively.

Data-parallelism
1 GPU 2 GPUs 4 GPUs 8 GPUs

Tfake (s) 2.95 3.517 5.737 7.169
Speed-up 1X 0.84X 0.51X 0.41X
Treal (s) 3.487 8.956 9.906 7.407
Speed-up 1X 0.39X 0.35X 0.47X

Hybrid-parallelism
1 GPU 2 GPUs 4 GPUs 8 GPUs

Tfake (s) 2.95 1.615 0.957 0.681
Speed-up 1X 1.83X 3.08X 4.33X
Treal (s) 3.487 2.304 1.329 0.776
Speed-up 1X 1.51X 2.62X 4.49X

into a single device. During the entire training process,
the fully connected layers’ weights don’t need to be spread
over the network, thus significantly reduces the network
communication overhead, which in turn improves scalabil-
ity.

4. Conclusions
In this paper, we introduce several practical optimization
methods regarding to distributed deep learning. Late-
multiply is suited to DNN to reduce communication over-
head. For models mixed with CNN and DNN, hybrid-
parallelism could fully exploit models’ computation-to-
communication ratio. We have also experimented those
optimization strategy with existing deep learning software
and provide benchmark results demonstrating their superi-
ority over standard distributed implementation.

As future work, we would like to abstract distributed deep
learning as a graph optimization problem since the forward
and backward execution phase construct a typical compu-
tation graph. We can formulate it in the following way:

Problem formulation Given a certain amount of compu-
tation devices R and a specific model architecture Ω, we
need to find the best placement strategy S, with which the
training graph could be split and placed into those compu-
tation devices with the shortest training time.

A few notations are defined as follows:

• R consists of N computation devices, notated as ri ∈
R; i ∈ [1, N ];

• Ω can be viewed as a composition of K sub-graphs or
sub-models, notated as Ωj ∈ Ω; j ∈ [1,K];

• Placement strategy S can be viewed as paring
computation devices with sub-graphs, notated as
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{ri, ~Ωi}; i ∈ [1, N ], ~Ωi 3 {Ωj , Ωj+1, ...} with Ωj ∈
Ω. Note, Ωj may be placed into multiple devices si-
multaneously.

It can be shown that this placement problem is an Integer
Linear Programming3 problem which is NP-hard. It’s non-
trivial to find the optimal placement strategy. In reality, it
is not always expected to find the optimal strategy, often
sub-optimal one is good enough for speeding up the train-
ing process. Usually, heuristic methods are used for look-
ing for a good or sub-optimal placement strategy. Hybrid-
parallelism actually can be viewed as a specific case of
graph optimization problem. In the future, more effort will
be put on this general optimization problem.
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