Memorization in Recurrent Neural Networks

Tegan Maharaj ' > David Krueger ' * Tim Coojimans

Abstract

We present work in progress on understanding
generalization in deep networks by analyzing dif-
ferences in learning behaviour of recurrent neural
networks (RNNs) on noise data vs. real data -
i.e., by investigating memorization. There has
been a recent surge of interest in explaining the
generalization performance of deep neural net-
works (DNNs), partially spurred by the observa-
tion that feedforward DNNs can fit random noise
datasets with O training error. RNNs are typically
extremely deep; analyzing learning behaviour in
RNNs thus gives an interesting perspective for
understanding memorization, generalization, and
effective capacity in deep networks. We demon-
strate that fitting noise with RNNs is more difficult
than in feedforward networks; standard gradient-
based optimization fails to reach O training error.
We make several other observations comparing
and contrasting our results with previous work,
and suggest a suite of experiments for future work.

1. Introduction

The question of whether deep networks fit data by find-
ing patterns or simply memorizing examples has been the
subject of recent work. Zhang et al. (2016) point out that tra-
ditional measures of capacity do not explain the (very good)
generalization performance of deep networks, given that
these networks are typically massively over-parameterized,
and are capable of fitting random noise. Arpit et al. examine
the question from another angle, demonstrating that deep
networks have qualitatively different behavior on random vs
noise data, and suggesting that DNNs generalization is due
to their propensity to learn simple patterns first. Arpit et al.
call for a data-dependent notion of capacity to explain DNN
generalization, and ? provide one, establishing non-vacuous
generalization bounds for stochastic DNNs.

"MILA (Montreal Institute for Learning Algorithms) *Montreal
Polytechnique >University of Montreal. Correspondence to: Tegan
Mabharaj <tegan.maharaj@polymtl.ca>.

Proceedings of the 34" International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017 by
the author(s).

13

All these works, however, examine feed-forward networks;
we extend this investigation to recurrent neural networks
(RNNSs), performing experiments on the tasks of character-
level language modeling (Penn Treebank) and classification
(sequential MNIST). While some of the results in these
previous work on feedforward networks carry over to RNNs,
we also find significant differences.

Our findings so far are:

1. Fitting random noise with RNNs is much harder than
with feedforward nets. While we were able to fit small
sets of noise data to some extent, we fail to substantially
reduce training error on either task when training on
the full (noised) datasets. This contrasts strongly with
the results of Zhang et al. (2016) on feedforward nets.

2. Like Zhang et al. (2016) and Arpit et al. we find that
label noise is more difficult to fit than input noise.

3. Like Arpit et al., we find that models trained on mixed
datasets (containing both real and noise examples) first
learn patterns which generalize to the validation set
(i.e. to unseen real data).

4. We find that easy examples exist in the random input
version of the sequential MNIST task. This contrasts
with the results of Arpit et al.; in their experiments
with MLPs, random MNIST inputs appear to have
equal difficulty.

RNNs are known to be difficult to optimize in general, but
the exceptional difficulty of fitting random data is surpris-
ing. Having noted the difficulty of fitting random data with
RNNSs, our next step will be a more thorough attempt to fit
RNNs on a broader range of synthetic tasks that allow us to
control relevant factors such as sequence length and dataset
size. Going forward, we also plan to replicate more of the
experiments of Arpit et al. on RNNS.

Unlike for feedforward nets, for RNNS, the ability to mem-
orize examples may actually be desirable. At a high level,
the distinguishing feature of RNNs is their ability to create
a fixed-length representation of variable length data using a
finite number of parameters. From this viewpoint, an ideal-
ized RNN would perform lossless compression of any input
sequence, since the relevance of past and present inputs de-
pends on future inputs and is hard to anticipate. Meanwhile,



Memorization in RNNs

the output mapping could take responsibility for discarding
information stored in the current hidden state which is ir-
relevant to the current output. The difficulty of optimizing
RNNs suggests that their learned compression is both 1) is
lossy, and 2) strongly data-dependent.

1.1. Structure of this paper

We first define RNNs formally, then discuss concepts of
depth, effective capacity, and memorization as they apply
to RNNs, and motivate our empirical approach in line with
previous work. We present and discuss results of our inves-
tigation of learning behaviour, generalization, and effective
capacity as influenced by noise vs. real data, and conclude
by proposing further experiments, conjectures to be investi-
gated, and possible avenues for theoretical corroboration of
our results.

2. Background and Related Work

2.1. Recurrent neural network definitions and notation

A recurrent neural network (RNN) is a neural network
which processes sequential input (z1,Za,..,Tt, ..., Tn),
using a nonlinear function f to construct correspond-
ing representations (called hidden states, or activations)
(h1, ha, ..., he, ..., hy), each of which depends on the input
and on the previous timestep:

he = f(xe, he—1) (D

For a simple RNN, or ’vanilla’ RNN, this is most com-
monly implemented with two sets of recurrent parameters;
W for the input, and U for the hidden-to-hidden transition,
and where the activation function f is usually a logistic
sigmoid or hyperbolic tangent (tanh), sometimes rectified
linear (ReLLU).:

hy = f(Way, Uht—1) 2)

RNNs are usually trained with stochastic gradient descent
(SGD) via backpropagation through time (BPTT).The re-
peated use of the same parameters for each timestep of input
can be viewed as repeated applications of a transition oper-
ator with learned parameters. While this characteristically
allows RNNs to maintain a 'memory’ of information from
past timesteps, because of repeated multiplications they are
vulnerable to problems of both vanishing and exploding
gradients, as demonstrated by Bengio et al. (1994). This
observation motivates the use of gated architectures, as used
in Long short-term memory networks (LSTM) (Hochreiter
& Schmidhuber, 1997a) and Gated recurrent units (GRU).

2.2. Recurrence and Depth

RNNs are the deepest neural networks. But unlike with
feedforwards nets, the depth in recurrent networks mostly

comes from the repeated application of the same transition
operator. This may cause an RNNs hidden activations (and
their gradients) to increase or decrease exponentially (Ben-
gio et al., 1994) (although inputs, noise, and nonlinearities
may all counter-act this effect to some extent).

2.3. RNN capacity

Recurrent neural networks are theoretically capable of rep-
resenting universal Turing machines (Siegelmann & Sontag,
1995) (although in practice finite numerical precision limits
their capacity), so effective capacity is particularly impor-
tant when trying to look at RNNs. We define effective
capacity as in Arpit et al.; effective capacity is an attribute
of a learning algorithm (including a model and training
procedure), and denotes the set of hypotheses which that
algorithm could reach given some training set.

3. Experiments and Discussion

Experiments are designed to examine differences between
noise vs. real data, in order to assess memorization be-
haviour. We perform experiments on sequential MNIST (Le
et al., 2015) (sMNIST) and character-level Penn Tree-
bank (Marcus et al., 1993) ¢PTB). sMNIST is a classifi-
cation task: given the sequence of pixels in a vector rep-
resenting an image, classify the digit shown in that image.
cPTB is a language-modeling task: given the sequence of
characters thus far, predict the next. cPTB is usually mea-
sured in log-likelihood/bits-per-character (BPC)'), but in
order to assess memorization, we look at per-character and
per-sequence accuracy on cPTB.

Unless otherwise noted: all experiments for SsMNIST in-
volve a single-layer LSTM (Hochreiter & Schmidhuber,
1997b) with orthogonal initialization and Layer Normaliza-
tion (Ba et al., 2016) optimized with RMSProp (Tieleman
& Hinton, 2012) with decay rate 0.5 and learning rate 1e 3.
All experiments for cPTB use single-layer LSTMs with
1000 units, initialized orthogonally, optimized with ADAM
(Kingma & Ba, 2014), with sequences of 100, gradient norm
clipping set to 1, and learning rate of 23 .

3.1. Differences on noise vs. real data early in training

Results on sMNIST, shown in 1, are similar to findings of
(Arpit et al.) with feed-forward nets on MNIST in that some
examples are easier than others, but differ in that this is also
true for X noise (random data).

'BPC is a deterministic function of NLL; BPC =
logo(NLL)



Memorization in RNNs

90

= Real
X noise 100%
e~ Y noise 100%

80

1000

Figure 1. Normalized percentage of times a given example is cor-
rectly classified after 100 epochs of training, averaged over 70
experiments with different random seeds on 1000 examples from
sMNIST. More examples are consistently learned earlier for real
data, and random data (X Noise, orange) is harder to fit than ran-
dom labels (Y Noise, green). More significantly, we note that all
three curves show evidence of variability in the difficulty of fitting
examples, in contrast to previous results with feedforward nets.

3.2. Differences in learning behaviour and
generalization

First in Figure 2 we plot. Observe that we can’t fit noise on
the full dataset or 1/8th, so we examine different noise levels
only for 1/64th (3162 examples), 1/512th (790 examples),
and 1/4096th (127 examples), shown in Figure 3.

3.3. Differences in effective capacity

Unlike typical feed-forward nets trained on common bench-
mark tasks like MNIST and CIFAR, typical RNNs trained
on common benchmark tasks like sequential MNIST and
Penn Treebank do not usually get close to 100% training
accuracy. We observe in Figure 3 that it requires more
effective capacity to fit noise.

Language models cannot hope to achieve 100% accuracy on
tasks, since the past sequence of characters does not deter-
mine the next character. In a finite dataset, such ambiguities
may not arise. For instance, the Penn Treebank corpus is
composed of a single continuous example, and in principle,
an RNN could be trained to memorize this string. In prac-
tice, however, RNNSs are trained on this task using truncated
backprop through time (TBPTT), and the hidden state is
often reset at regular intervals, for instance, after every 100
steps, or at the end of every sentence.

In future work, we plan to design tasks which do not suffer
from such ambiguities. Designing synthetic tasks in such
a way is straightforward, but removing ambiguities from
cPTB requires more thought and is subject to design choices.

197 (1/4096th)
790 (1/512th)
3162 (1/64th)
12648 (1/8th)
50595 (Full)

ssreRESTABIEASERT

25w a gy ST Ny e BRATE

[frg 457 T T

o T mmrEsawwmazw,

S LT

20

o] 200 400 600 800 1000 1200 1400

100

197 (1/4096th)
790 (1/512th)
3162 (1/64th)
12648 (1/8th)
50595 (Full)

80

60

40

20

"
ok asema =

o] 500 1000 1500 2000

v 197 (1/4096th)
790 (1/512th)
3162 (1/64th)
12648 (1/8th)
50595 (Full)

800 1000 1200 1400 1600

Figure 2. Training (solid) and validation (dotted) curves for dif-
ferently sized subsets of the data in increasing powers of 8, for
real data (top), 100% X noise (middle), and 100% Y noise (bot-
tom) on cPTB. Except on very small datasets (1/64th and less),
optimization fails. on noise data.

One simple idea which would ameliorate but not solve the
problem is to measure performance on the end of training
sequences only (where the model has more context).



Memorization in RNNs

Figure 3. Training (solid) and validation (dotted) curves for differ-
ent values of X noise (left column) and Y noise (right column) and
differently sized subsets of the data (rows: [197, 790, and 3162]
examples from top to bottom)

4. Discussion

Our results so far reveal some interesting differences be-
tween RNNs and feedforward nets. The most significant
is the difficulty of fitting random noise with RNNs. The
difficulty of fitting noise with RNNs suggests that these
models might be inherently more reliant on learning pat-
terns than feedforward models, and thus might generalize
better. Intuitively, the repeated application of the same tran-
sition operator might cause repeated subsequences within
a given input to be processed in a similar way (although in
principle, the difference in context could cause them to be
treated entirely differently).

On the other hand, the difficulty of fitting noise makes is at-
tractive as challenge for optimization algorithms. We would
expect optimizers which can fit noise datasets to yield sub-
stantial improvements on training performance for real data
as well. This could be especially useful because RNN opti-
mization is more difficult than feed-forward optimization,
and remains a larger obstacle. Still it is unclear whether
this would improve generalization, since poor optimization
may actually contribute to generalization in RNNs. We hy-
pothesize that better optimization would improve validation
performance up to some point (dependent on other aspects
of the problem and method), and degrade it thereafter. If
overfitting becomes a challenge, regularization might still
allow one to reap the benefits of improved optimization.

5. Future Work

In future work we plan to evaluate RNN optimization on
a broader range of synthetic tasks. These experiments are
designed to measure how sequence length, capacity, and
dataset characteristics (categorical vs. real-vector values
inputs/outputs; the number of examples, inputs, outputs)
affect the ability of RNNs to fit a training set (e.g. with
100% accuracy).

We propose the following types of synthetic tasks:

1. next-step prediction: given input and output se-
quences of length N, predict y,, from x1.,, y1.,—1 (for
all 1 < n < N). Language modeling is an instance of
this setting where y,, = T,,—1.

2. sequence-to-sequence (seq2seq): given an input x =
21.; and output y = y1.;, predict y,, from x1.; (for all
1<n<N).

3. vector-to-sequence / sequence-to-vector: Special
cases of seq2seq where the input / output (respectively)
has only one time-step. Sequential MNIST is an in-
stance of sequence-to-vector.

In every case, the inputs and targets can be independently
chosen to be categorical or real-valued. Combining all of the
options yields a total of 16 synthetic task settings. We note
that previous work focused entirely on classification tasks
on real-valued inputs, so changing the type of input and
output for feedforward experiments would also be novel.

References

Arpit, Devansh, Jastrzbski, Stanisaw, Ballas, Nicolas,
Krueger, David, Bengio, Emmanuel, Kanwal, Maxin-
der S., Maharaj, Tegan, Fischer, Asja, Courville, Aaron,
Bengio, Yoshua, and Lacoste-Julien, Simon. A closer
look at memorization in deep networks. ICML 2017 (to

appear).

Ba, Jimmy Lei, Kiros, Jamie Ryan, and Hinton, Geoffrey E.
Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

Bengio, Yoshua, Simard, Patrice, and Frasconi, Paolo.
Learning long-term dependencies with gradient descent
is difficult. IEEE transactions on neural networks, 5(2):
157-166, 1994.

Hochreiter, Sepp and Schmidhuber, Jiirgen. Long short-term
memory. Neural computation, 9(8):1735-1780, 1997a.

Hochreiter, Sepp and Schmidhuber, Jiirgen. Long short-term
memory. Neural computation, 9(8):1735-1780, 1997b.



Memorization in RNNs

Kingma, Diederik and Ba, Jimmy. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Le, Quoc V, Jaitly, Navdeep, and Hinton, Geoffrey E. A
simple way to initialize recurrent networks of rectified
linear units. arXiv preprint arXiv:1504.00941, 2015.

Marcus, Mitchell P, Marcinkiewicz, Mary Ann, and San-
torini, Beatrice. Building a large annotated corpus of
english: The penn treebank. Computational linguistics,
19(2):313-330, 1993.

Siegelmann, Hava T and Sontag, Eduardo D. On the com-
putational power of neural nets. Journal of computer and
system sciences, 50(1):132-150, 1995.

Tieleman, Tijmen and Hinton, Geoffrey. Lecture 6.5-
rmsprop: Divide the gradient by a running average of
its recent magnitude. COURSERA: Neural networks for
machine learning, 4(2), 2012.

Zhang, Chiyuan, Bengio, Samy, Hardt, Moritz, Recht,
Benjamin, and Vinyals, Oriol. Understanding deep
learning requires rethinking generalization. CoRR,
abs/1611.03530, 2016. URL http://arxiv.org/
abs/1611.03530.


http://arxiv.org/abs/1611.03530
http://arxiv.org/abs/1611.03530

