
Deep Relaxation: partial differential equations
for optimizing deep neural networks

Pratik Chaudhari * 1 Adam Oberman * 2 Stanley Osher 3 Stefano Soatto 1 Guillaume Carlier 4

Abstract
This paper establishes a connection between non-
convex optimization and nonlinear partial differ-
ential equations (PDEs). We interpret empiri-
cally successful relaxation techniques motivated
from statistical physics for training deep neu-
ral networks as solutions of a viscous Hamilton-
Jacobi (HJ) PDE. The underlying stochastic con-
trol interpretation allows us to prove that these
techniques perform better than stochastic gra-
dient descent (SGD). Moreover, we derive this
PDE from a stochastic homogenization problem
which proves connections to algorithms for dis-
tributed training of deep networks like Elastic-
SGD. Our analysis provides insight into the ge-
ometry of the energy landscape and suggests new
algorithms based on the non-viscous Hamilton-
Jacobi PDE that can effectively tackle the high
dimensionality of modern neural networks.

1. Introduction

Deep neural networks have achieved remarkable success in
a number of applied domains from visual recognition and
speech to natural language processing and robotics (Le-
Cun et al., 2015). Despite many attempts, an understand-
ing of the roots of this success remains elusive. A deep
network is trained by minimizing a non-convex loss func-
tion of its parameters, typically using stochastic gradient
descent (SGD), with a variety of regularization techniques.

If the parameters (weights) of a neural network are given by
x ∈ RN , training involves solving an optimization problem

x∗ = arg min
x

f (x), (1)

*Equal contribution 1Computer Science Department, UCLA.
2Department of Mathematics and Statistics, McGill University.
3Department of Mathematics, UCLA. 4CEREMADE, Université
Paris IX Dauphine.
Proceedings of the 34th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

f (x)

uviscous HJ(x, T)

unon-viscous HJ(x, T)

Figure 1: Smoothing of a loss function f (x) by the viscous
Hamilton-Jacobi equation (red) and the non-viscous Hamilton Ja-
cobi equation (blue). An initial density (light gray) when evolved
using SGD dynamics gets stuck in a local minimum (dark gray).
If the viscous HJ equation is used to smooth the loss resulting
in uviscous HJ(x,T), the terminal density is concentrated around
the global minimum. Smoothing by the non-viscous HJ equation
results in unon-viscous HJ(x,T) and has non-convex regions which
slows down SGD resulting in a slightly sub-optimal solution.
However, the critical points for the non-viscous HJ smoothing are
unchanged in both value and location and unon-viscous HJ(x,T) can
be interpreted as a generalized convex envelope of f (x). This fig-
ure was produced using monotone finite differences (Oberman,
2006) with the Fokker-Planck equation (FP) to solve for the re-
spective densities.

where f (x) is the sum of the loss function, e.g., the cross-
entropy loss, and possibly, a regularizer. This problem is
challenging for deep networks because f (x) is non-convex
and x is high-dimensional. Motivated from the statisti-
cal physics literature that studies the energy landscapes
of discrete perceptrons (Baldassi et al., 2015), the authors
in Chaudhari et al. (2016) optimize a modified loss function
called “local entropy” defined as

fγ(x) =− log
(

Gγ ∗ e− f (x)
)
, (2)

where Gγ(x) = (2πγ)−N/2 exp
(
− |x|

2

2γ

)
is the Gaussian

(heat) kernel. The modified loss fγ(x) is a smoother ver-
sion of f (x) obtained by convolution with a Gaussian and
has been shown to perform well in practice. Moreover, it

PDEs for deep neural networks

can be shown analytically that local entropy for discrete
perceptrons results in solutions that have low generaliza-
tion error (Baldassi et al., 2016b). Such solutions belong
to dense clusters, i.e., a large fraction of their neighboring
configurations are solutions themselves. Similarly, for neu-
ral networks with continuous weights, these regions corre-
spond to flat minima (Chaudhari et al., 2016).

Our first result in Section 3 shows that local entropy
fγ(x) := u(x,γ) is the solution of the viscous Hamilton-
Jacobi PDE

∂u
∂ t

=−1
2
|∇u|2 + 1

2
∆ u, (viscous HJ)

for 0 < t ≤ γ with the initial condition u(x,0) = f (x). The
Laplacian of u(x, t) is defined as ∆ u = ∑

n
i=1

∂ 2

∂x2
i
u. In other

words, fγ(x) that was designed in the physics literature to
bias optimization towards flat regions is simply a way of
smoothing the original loss using a PDE; this is surprising.
We further exploit this connection in Section 5 to analyze
the underlying stochastic optimal control problem (Flem-
ing & Rishel, 2012) and show that minimizing local en-
tropy leads to an improvement in the original loss f (x) as
compared to SGD.

Our second result proves that Elastic-SGD (Zhang et al.,
2015) which is a popular algorithm for distributed opti-
mization of deep networks is equivalent to local entropy
under certain conditions. The former solves

arg min
x,x1,...,xn

n

∑
a=1

f (xa)+
1
2γ
|xa− x|2 (3)

where x1, . . . , xn are n copies of the parameters that are
distributed among n workers and x is a reference copy, akin
to a master. To show this, we start with the continuous-time
SGD dynamics given by

dx(t) =−∇ f (x) dt +dW (t) (SGD)

for t ≥ 0 where W (t) ∈ RN is the N-dimensional Wiener
process. The algorithm named Entropy-SGD introduced
by Chaudhari et al. (2016) to minimize fγ(x) is a Markov
chain Monte Carlo (MCMC) algorithm that can be written
in continuous-time as the following system of stochastic
differential equations (SDEs)

dy(s) =−1
ε

(
y− x

γ
+∇ f (y)

)
ds+

1√
ε

dW (s) (4)

dx(s) =−γ
−1 (x− y) ds, (5)

where y(s) ∈ RN and ε is a time scale. As ε → 0, the y(s)
dynamics becomes very fast and using the technique of ho-
mogenization of SDEs (Pavliotis & Stuart, 2008), we show

that the gradient descent dynamics for (7) minimizes fγ(x)
and is equivalent to the above SDEs if ergodicity holds, i.e.,
when ∇2 f (x)+ γ−1I � 0. While Elastic-SGD averages the
xa variables “spatially” across workers, Entropy-SGD av-
erages the y(s) variable in time. This connection is novel
and powerful because (i) it leads to a deeper understanding
of the loss that Elastic-SGD minimizes, and (ii) it shows
the equivalence of a completely distributed algorithm to a
seemingly-different non-distributed algorithm. This con-
nection, under some approximations, has also been sug-
gested by Baldassi et al. (2016a) using replica theory.

Our next result discusses applications of new PDEs for
non-convex optimization. We observe that our results are
independent of the viscosity of the PDE (coefficient of the
Laplacian in (viscous HJ)) and exploit this to study the non-
viscous HJ equation

∂u
∂ t

=−1
2
|∇u|2 . (non-viscous HJ)

This effectively sets the thermal noise in the MCMC up-
dates of Chaudhari et al. (2016) to zero and results in a
much cleaner set of update equations using the Hopf-Lax
formula (HL). We can further simplify these updates and
show that smoothing using the HJ equation is equivalent to
the proximal point iteration

xk+1 = proxt f (xk). (6)

Note that computing the proximal operator for a general
non-convex function f (x) is challenging, the MCMC up-
dates of Entropy-SGD or the non-viscous HJ equation up-
dates (6) can indeed be interpreted as computing the proxi-
mal operator approximately using (stochastic) gradient de-
scent. We demonstrate that this new algorithm is faster than
Entropy-SGD in practice for deep networks.

2. Background

For a prototypical K-class classification problem on a
dataset {(ξi, yi)}M

i=1 where ξi are samples and yi ∈
{1, . . . ,K} are ground truth labels, we wish to minimize

f (x) :=
1
M

M

∑
i=1

fi(x),

where fi(x) is the loss on the ith sample. For instance, the
cross-entropy loss is given by

fi(x) =−
K

∑
k=1

1{yi=k} log ŷk(ξi; x),

where ŷ (ξi; x) ∈ RK is the softmax output of the network
for sample ξi and weights x ∈ RN . Let us emphasize that
the loss function f (x) in deep learning is a non-convex
function of its argument x.

PDEs for deep neural networks

2.1. Stochastic gradient descent (SGD)

Computing the entire gradient ∇ f (x) is prohibitive for large
M. Stochastic gradient descent (Robbins & Monro, 1951)
avoids this and performs the updates

xk+1 = xk−ηk ∇ fik(xk), (7)

where ηk > 0 for k ∈N is the learning rate and the example
ik ∈ {1, . . . ,M} is sampled uniformly randomly. We will
overload the notation to denote a mini-batch of m exam-
ples by ik itself. The gradient obtained by back-propagation
on such a mini-batch is a stochastic variable, denoted by
∇ fmb(x), and it is a common to assume that it is unbiased
with bounded variance, i.e.,

E [∇ fmb(x)] = ∇ f (x),

E
[
|∇ fmb(x)−∇ f (x)|2

]
≤ β

−1
mb ,

for all x∈RN for some β
−1
mb ≥ 0. The discrete-time dynam-

ics in (7) can then be modeled by the SDE (8)

dx(t) =−∇ f (x(t)) dt +dW (t). (8)

If the initial condition x(0) is sampled from some density
ρ0(x), the Fokker-Planck equation (Risken, 1984) gives the
evolution of the unnormalized density ρ(x, t) for SGD:

∂

∂ t
ρ(x, t) = ∇ ·

(
∇ f (x) ρ(x, t)

)
+

1
2

∆ ρ(x, t). (FP)

This is the equation used to plot the dark grey density
in Fig. 1. With mild assumptions on f (x), and even if f is
non-convex, ρ(x, t) converges to the unique stationary so-
lution of (FP) as t→ ∞ (Pavliotis, 2014, Section 4.5). This
limit is the Gibbs distribution

ρ
∞(x) = Z−1e− f (x), (9)

where Z is a normalizing constant. If there is a multiplier of
β in the exponent (also known as the inverse temperature
in physics), we can see from (9) that as β → ∞, the Gibbs
distribution concentrates on the global minimizers of f (x).
Remark 1 (Metastability). While the distribution ρ∞ is
still the unique stationary solution of (FP), convergence to
it can take an exponentially long time for a non-convex
f (x). Such a dynamics exhibit metastability, i.e., there
can be multiple quasi-stationary measures on large time
scales. For example, for a one-dimensional double-well
potential, Kramer’s law of diffusion states that this time
is inversely proportional to the spectral gap, i.e., the small-
est non-zero eigenvalue of the Hessian ∇2 f (x), and pro-
portional to exp(β (supx f (x)− infx f (x))). This also holds
in high dimensions (Glasstone et al., 1941; Bovier & den
Hollander, 2006). Simulated annealing (Kushner, 1987;
Chiang et al., 1987) is a popular technique to accelerate
convergence by modulating the inverse temperature β .

3. PDE interpretation of local entropy

It is a classical result (Evans, 1998) that for the heat equa-
tion ut =

1
2 ∆ u with the initial condition u(x,0) = f (x), the

solution u(x, t) is given by

u(x, t) = Gt ∗ f (x). (10)

In other words, the heat equation results in a convolution
of the original function f (x) by a Gaussian kernel whose
variance increases with time t. The Hopf-Cole transforma-
tion (Evans, 1998, Section 4.4.1) is another classical tool
that relates the solutions of the heat equation to those of
the Hamilton-Jacobi equation (viscous HJ). We restate this
connection in the lemma below to get our first result.

Lemma 2 (Hopf-Cole transformation). The local entropy
fγ(x) defined by (2) is the solution at time t = γ of the ini-
tial value problem for the viscous Hamilton-Jacobi equa-
tion (viscous HJ) with initial condition u(x,0) = f (x).

Proof. Define u(x, t) = − logv(x, t). From (2), v = e−u

solves the heat equation vt =
1
2 ∆ v with initial data v(x,0) =

exp(− f (x)). Taking partial derivatives gives

vt =−v ut , ∇v =−v ∇u, ∆v =−v ∆u+ v |∇u|2 ,
and one obtains (viscous HJ) by combining these expres-
sions.

Taking the gradient of (2) gives the following lemma.

Lemma 3 (Gradient of local entropy). The gradient of
local entropy ∇ fγ(x) = ∇u(x,γ) is given by

∇u(x, t) =
∫
Rn

x− y
γ

ρ
∞
1 (dy; x) (11)

where

ρ
∞
1 (y; x) = Z−1

1 exp
(
− f (y)− 1

2t
|x− y|2

)
(12)

and Z1 is a normalization constant.

Remark 4 (Alternative gradient). The convolution in (2)
in two different ways can be written using either Gγ as
the kernel or exp(− f (x)) as the kernel. The former
gives Lemma 3 while the latter gives

∇u(x, t) =
∫
Rn

∇ f (x− y) ρ
∞
2 (dy; x) (13)

where

ρ
∞
2 (y;x) = Z−1

2 exp
(
− f (x− y)− 1

2t
|y|2
)
. (14)

We will use this observation in two ways, (i) to show that
local entropy is a more powerful way of smoothing than
gradient averaging, and (ii) to derive a simpler update rule
for the Entropy-SGD algorithm in Section 6.

PDEs for deep neural networks

3.1. Non-viscous Hamilton-Jacobi equation

In addition to the connection with (viscous HJ) pro-
vided by Lemma 2, we can also explore the non-viscous
Hamilton-Jacobi equation. This corresponds to setting the
viscosity, i.e., the cefficient of the Laplacian in (viscous
HJ), to zero. This leads a simpler explicit formula for the
gradient; the resultant deterministic dynamic is indeed a
special case of the stochastic dynamics for the viscous-HJ
equation.

In the following lemma, we apply the well-known Hopf-
Lax formula (Evans, 1998) for the solution of the HJ equa-
tion. It is also called the inf-convolution of the func-
tions f (x) and 1

2t |x|
2 (Cannarsa & Sinestrari, 2004) and

is closely related to the proximal operator (Moreau, 1965;
Rockafellar, 1976).

Lemma 5 (Gradient of Hopf-Lax). If u(x, t) is the viscos-
ity solution of (HJ) with u(x,0) = f (x),

u(x, t) = inf
y

{
f (y)+

1
2t
|x− y|2

}
. (HL)

If the proximal operator

y∗ := proxt f (x) = arg min
y

{
f (y)+

1
2t
|x− y|2

}
(15)

is a singleton, ∇x u(x, t) exists, and

∇x u(x, t) =
x− y∗

t
= ∇ f (y∗), (16)

The proof is a direct application of Danskin’s theo-
rem (Bertsekas et al., 2003, Prop. 4.5.1) which allows us to
differentiate through the inf operation in (HL).

Remark 6 (Dynamics for HJ). The previous lemma gives
that p∗ := ∇x u(x, t) is the solution of

p = ∇ f (x− t p),

and it exists if ∇2 f (y)+ t−1 I � 0 near y = x− t p∗. It can
be obtained by a fixed point iteration

pk+1 = ∇ f (x− t pk) (17)

which converges if t
∣∣∇2 f (y)

∣∣< 1 near y = x− t p∗.

Remark 7 (Proximal point iteration). We can write the
discrete-time gradient descent dynamics using ∇x u(x, t)
from (16) as xk+1 = xk − η t−1

(
xk−proxt f (xk)

)
where

η > 0 is the step-size. For η = t, we therefore have the
proximal point iteration given by

xk+1 = proxt f (xk).

Let us compare this to the standard proximal gradient de-
scent update xk+1 = proxth(xk − t∇g(xk)) where the loss
function f (x) is a sum of two terms: typically, a convex
function g(x) and possibly non-differentiable regularizer
h(x). Our update corresponds to setting g(x) = 0.

For a high-dimensional, non-convex function f (x), com-
puting the proximal operator in (15) is hard. Neverthe-
less, the fixed point iteration (17) allows us to compute
the proximal operator approximately. Note that the con-
vergence rate of approximate proximal gradient descent
matches that of gradient descent under certain technical
conditions (Schmidt et al., 2011).

Remark 8 (Implicit gradient descent). The proximal op-
erator is equivalent to implicit gradient descent, also known
as backward Euler iteration. While gradient descent up-
dates xk+1 = xk−η ∇ f (xk), the non-viscous HJ equation
via (6) leads to

xk+1 = xk−η ∇ f (xk+1).

We note that the above backwards Euler method may have
many solutions for xk+1. Ideally, we wish to choose the one
that gives the minimum in (HL) for x = xk.

4. Derivation via homogenization

This section employs homogenization of SDEs (Pavliotis
& Stuart, 2008, Chap. 10, 17), which is a technique used to
analyze dynamical systems with multiple time-scales that
have a few fast variables that may be coupled with other
variables which evolve slowly. Computing averages over
the fast variables allows us to obtain averaged equations
for the slow variables in the limit that the times scales sep-
arate. This will allow us to give a rigorous mathematical
treatment to the development of Chaudhari et al. (2016)
and Lemma 3. We can also show that an algorithm called
Elastic-SGD (Zhang et al., 2015) that was designed for dis-
tributed training of deep networks is equivalent to local en-
tropy under certain conditions.

Consider the following system of SDEs

dx(s) = h(x, y) ds

dy(s) =
1
ε

g(x, y) ds+
1√
ε

dW (s);
(18)

where h,g are sufficiently smooth functions, W (s) ∈ Rn is
the standard Wiener process. The parameter ε > 0 is the
homogenization parameter and introduces a fast time-scale
for the dynamics of y(s). If the unique invariant measure
ρ∞(y; x) exists for a fixed x and is ergodic, in the limit ε→
0, the dynamics of x(s) in (18) converges in distribution to

dX(s) = h(X) ds

PDEs for deep neural networks

where the homogenized vector field for X is defined as

h(X) =
∫

h(X ,y) ρ
∞(dy; X);

in other words, it is the average against the invariant mea-
sure.

Theorem 9 (Entropy-SGD via homogenization). Con-
sider the gradient

∇ fγ(x) = γ
−1
∫
RN

(x− y) ρ
∞
1 (dy; x)

from Lemma 3. The gradient descent dynamics for x(s)
using this gradient is the homogenized version of

dx(s) =−γ
−1 (x− y) ds

dy(s) =−1
ε

[
∇ f (y)+

1
γ
(y− x)

]
ds+

1√
ε

dW (s).

(19)
if f (y) + 1

2γ
|x− y|2 is strictly convex, i.e., if ∇2 f (y) +

γ−1I � 0 for all y ∈ RN , the invariant measure of y(s) is
ergodic.

The proof of this theorem is immediate from our definition
of homogenization above.

Remark 10 (Time average vs. spatial average). Since
the above analysis assumes that ρ∞(y; x) is ergodic, we
can also write the homogenized vector field equivalently as

h(X) = lim
T→∞

1
T

∫ T

0
h(x, y(s)) ds.

Remark 11 (Alternative SDE). Using Remark 4, we can
also write the Entropy-SGD dynamics as the system

dx(s) =−γ
−1

∇ f (x− y) ds

dy(s) =
1
ε

(
∇ f (x− y)− γ

−1 y
)

ds+
1√
ε

dW (s);
(20)

this is equivalent to the system in (19).

4.1. Elastic-SGD as local entropy

Consider the loss function for Elastic-SGD (3), the
continuous-time stochastic gradient descent dynamics for
this can be given by:

dxa(s) =−1
ε

[
∇ f (xa) ds− (xa− x)

γ

]
ds+

1√
ε

dW a(s)

dx(s) =−γ
−1

n

∑
a=1

(x− xa) ds;

for a≤ n. We now scale the time by ε for the dynamics of
the workers xa and by n for the dynamics of x(s). If each

of them has an ergodic invariant measure ρ∞(xa; x), the
dynamics of x(s) only sees the homogenized vector field
given by

h(X) =
1

n γ

∫ (
n

∑
a=1

(xa−X)

)
n

∏
a=1

ρ
∞(dxa; X)

=−γ
−1 X +

1
n γ

lim
T→∞

1
T

∫ T

0

n

∑
a=1

xa(s) ds

=−γ
−1X + γ

−1 lim
T→∞

1
T

∫ T

0
x1(s) ds

= γ
−1
∫

(x1−X) ρ
∞(dx1; X),

which is exactly the homogenized dynamics of the
Entropy-SGD algorithm from Theorem 9. In the above
derivation, the first step is written using the average over
the product measure of the workers conditional upon a
fixed X , the second step follows using ergodicity of each
worker and the third step follows because the workers are
identically distributed.

This proves that the Elastic-SGD algorithm is equivalent to
minimizing local entropy under ergodicity conditions.

4.2. Heat equation vs. the viscous Hamilton-Jacobi
equation

We defined local entropy as the convolution of the expo-
nentiated loss function (2). Instead, one can also study

f 2
γ (x) = Gγ ∗ f (x) (21)

which is the solution of the heat equation (10). Since the
gradient ∇ f 2

γ (x) corresponds to averaging the original gra-
dient ∇ f (x) over Gaussian perturbations of variance γ , we
can write the gradient descent dynamics for f 2

γ (x) as

dx(s) =−∇ f (x− y) ds

dy(s) =− 1
εγ

y ds+
1√
ε

dW (s).
(22)

Note that the dynamics for y(s) does not depend on x(s) at
all, this is in contrast to the system (20) for Entropy-SGD.
This extra gradient term ∇ f (x−y) in (20) is exactly the dif-
ference between the smoothing performed by local entropy
and the smoothing performed by heat equation. The latter
is common in the deep learning literature under different
forms, e.g., Gulcehre et al. (2016) and Mobahi (2016). The
former version however has much better empirical perfor-
mance (cf. experiments in Section 7).

5. Stochastic control interpretation

The interpretation of local entropy fγ(x) as the solu-
tion of a viscous Hamiltonian-Jacobi equation provided

PDEs for deep neural networks

by Lemma 2 allows us to interpret gradient descent as an
optimal control problem. While the interpretation does
not have immediate algorithmic implications, we can prove
that the expected value of a minimum is improved by using
local entropy as compared to SGD.

Consider the following controlled SDE

dx(s) =−∇ f (x) ds−α(s) ds+dW (s) (CSGD)

where t ≤ s ≤ T , x(t) = x and α(·) is the control. Let us
define a stochastic optimal control problem that minimizes
the functional for a given solution x(·) of (CSGD) corre-
sponding to some control α(·),

C (x(·), α(·)) = E
[
V (x(T))+

1
2

∫ T

0
|α(s)|2 ds

]
. (23)

Here the terminal cost is a given function V : RN → R and
we use the prototypical quadratic running cost. If the value
function

u(x, t) = min
α(·)

C (x(·), α(·)).

is the minimum expected cost over admissible controls and
over paths which start at x(t) = x, it is known that u(x, t)
is the unique viscosity solution of a Hamilton-Jacobi-
Bellman (HJB) PDE (Fleming & Rishel, 2012)

−ut(x, t) =−∇ f (x) ·∇u(x, t)− 1
2
|∇u|2 + 1

2
∆ u

(HJB)
for t ≤ s ≤ T along with the terminal condition u(x,T) =
V (x). Note that (HJB) is written as a backward-time equa-
tion. We make note that in this case, the optimal control is
equal to the gradient of the solution

α
∗(x, t) = ∇u(x, t). (24)

5.1. Improvement in the value function

We first show that the value function obtained by the dy-
namics (CSGD) using the optimal control (24) improves as
compared to SGD.

Theorem 12. Let xcsgd(s) and xsgd(s) be solutions
of (CSGD) and (8), respectively, with the same initial data
xcsgd(0) = xsgd(0) = x0. For a fixed time t ≥ 0, we have

E
[
V (xcsgd(t))

]
≤ E

[
V (xsgd(t))

]
− 1

2
E
[∫ t

0

∣∣α∗(xcsgd(s),s)
∣∣2 ds

]
.

Proof. The value function ν(x, t) = E [V (x(t))] for SGD
where the expectation is taken over paths of (8), satisfies

νt =−∇ f (x) ·∇ ν +
1
2

∆ ν .

Since u(x, t) is the solution of (HJB), we have

ut ≤−∇ f (x) ·∇ u+
1
2

∆ u− 1
2
|∇u|2 .

Note that u(x,T) = v(x,T) = V (x). We now use the com-
parison principle (Evans, 1998) to conclude

u(x,s)≤ v(x,s), for all t ≤ s≤ T ; (25)

But since u(x, t) is the value function of (23), we also have

u(x, t) = E
[
V (x(t))+

1
2

∫ t

0
|α∗|2 ds

]
over paths of (CSGD) with x(t) = x, where α∗(·) is the
optimal control in (24). This completes the proof.

Remark 13. The dynamics in (CSGD) has a control α(·)
in addition to the gradient term ∇ f (x). This is therefore
different from performing gradient descent on fγ(x) and
instead amounts to minimizing f (x)+ fγ(x), i.e., treating
fγ(x) as a regularizer. The comparison principle in the
proof of Theorem 12 requires the coefficient of ∇ f (x) to
be the same in (8) and (CSGD).

6. Algorithmic details

In this section, we compare and contrast the various algo-
rithms in this paper and provide implementation details that
are used for the empirical validation in Section 7.

6.1. Entropy-SGD

We perform an Euler-Maruyama discretization of the sys-
tem in (19) and update the y(s) dynamics 1/ε = L times
before updating the x(s) variable. This results in

yk+1 = yk−η
′
(

∇ fmb(yk)+ γ
−1 (yk− xk)

)
+
√

η ′ β−1 wk

zk+1 = α zk +(1−α) yk+1

xk+1 =

{
xk−η γ−1 (xk− zk+1) if k/L is an integer,

xk else;
(Entropy-SGD)

where wk are zero-mean, unit variance Gaussian random
variables. We initialize yk = xk every time k/L is an integer.

In practice, we only have access to the noisy gradient for
a deep network, which we have explicitly denoted as ∇ fmb
above. The update in (Entropy-SGD) thus has two sources
of noise, one from the mini-batches and an additional noise
term wk. For small values of L we may be far from the
ergodic limit, we therefore maintain the exponential aver-
age of the yk variables using zk. This gives more weight
to later iterations and is beneficial in practice. The above
iterations are equivalent to the original MCMC algorithm
of Chaudhari et al. (2016).

PDEs for deep neural networks

6.2. Non-viscous Hamilton-Jacobi (HJ)

Remark 6 and (17) result in an update equation for HJ of
the form

pk+1 = α pk +(1−α) ∇ fmb(xk− γ pk)

xk+1 =

{
xk−η pk if k/L is an integer,

xk else;

(HJ)

We initialize pk = 0 every time k/L is an integer. We have
introduced a damping α > 0 compared to the fixed point
iteration (17) because the gradient ∇ fmb is stochastic.
Remark 14. The distinction between (Entropy-SGD)
and (HJ) is subtle. We can see this by using Remark 4 to
construct a system of updates (for β−1 = 0)

yk+1 =
(
1− γ

−1
η
′) yk +η

′
∇ fmb(xk− yk)

xk+1 =

{
xk−η ∇ fmb(xk− yk) if k/L is an integer,

xk else.

It is easy to see that setting yk := γ pk and α := (1−η ′/γ)

gives the same system as (HJ) if pk is the fixed point in (17).
Indeed, the non-viscous HJ equation is the limit of the vis-
cous HJ equation as the viscosity goes to zero. It is how-
ever easy to see that (HJ) results in much simpler updates
than (Entropy-SGD).

6.3. Heat equation

The gradient descent dynamics for the smoothing by the
heat equation (21) is given by

xk+1 = xk−
η

L

L

∑
i=1

∇ fmb(xk +wi) (26)

where wi are Gaussian random variables with zero mean
and variance γ I. We have implemented the convolution
in (21) as an average over Gaussian perturbations of the
parameters x.

6.4. Choosing hyper-parameters

As Fig. 1 shows, a larger γ leads to a smoother loss (2). We
can exploit this to introduce a technique called “scoping”
which reduces the smoothing effect as training progresses.
This enables quick progress with SGD in the beginning and
preserves the locations of the minimizers towards the end
as γ → 0. We update γ every time k/L is an integer using

γ = γ0 (1−10−3)k/L;

we pick γ0 ∈ [104, 10] so as to obtain the best validation
error. Other parameters in (Entropy-SGD), (HJ) and (26)
are fixed to α = 0.75 and η ′ = 0.1 while the learning rate
schedule is the same as that of SGD with the number of
epochs scaled by a factor of L.

7. Empirical validation

We now discuss experimental results on deep neural net-
works that demonstrate that the PDE methods considered
in this article achieve good regularization, aid optimization
and lead to improved classification on modern datasets.

7.1. Setup

We demonstrate experimental results for image classi-
fication on MNIST (LeCun et al., 1998) and CIFAR-
10 (Krizhevsky, 2009) datasets. As is standard prac-
tice for these benchmark problems, to enable compari-
son of numerical values with previous literature, we use
the test set for validation and report errors on it. We
do not perform any preprocessing for the MNIST dataset.
For CIFAR-10, we perform a global contrast normaliza-
tion (Coates et al., 2010) followed by a ZCA whitening
transform (Krizhevsky, 2009). We use the cross-entropy
loss for all our experiments. We report mean and standard
deviation of validation error over 6 independent runs for
all algorithms. The mini-batch size is fixed to 128 for all
experiments. We will use a well-tuned implementation of
SGD as a baseline for comparison.

We run the following algorithms for each network:

• Entropy-SGD: described in Section 6.1,

• HEAT: smoothing by the heat equation (cf. Sec-
tion 6.3),

• HJ: described in Section 6.2,

• SGD: described by (7),

Remark 15 (Effective epochs). As discussed in Section 6,
L is the number of gradient evaluations performed before
each weight update. We use L = 20 for Entropy-SGD and
L = 5 for the HJ and HEAT equation, L is defined to be 1
for SGD. Note that each weight update of Entropy-SGD or
HJ uses L times more number of back-props (with different
mini-batches) than SGD and is thus L times slower. We
therefore plot error curves against “effective epochs”, i.e.,
the number of epochs multiplied by L, which is a direct
measure of the wall-clock time.

7.2. MNIST

We use a standard LeNet for MNIST (LeCun et al., 1998)
with batch-normalization (Ioffe & Szegedy, 2015) and
dropout of probability 0.25 after every convolutional layer.
This has two convolutional layers with 20 and 50 channel
outputs respectively, and a fully-connected layer with 500
hidden units before softmax.

PDEs for deep neural networks

Table 1: Summary: Validation error (%) @ Effective epochs

Model Entropy-SGD HEAT HJ SGD

LeNet 0.5±0.01 @ 80 0.59±0.02 @ 75 0.5±0.01 @ 70 0.5±0.02 @ 67

All-CNN 7.96±0.05 @ 160 9.04±0.04 @ 150 7.89±0.07 @ 145 7.94±0.06 @ 195

The results for LeNet are described in Fig. 2a and Table 1.
The final validation error is very similar for all algorithms
at 0.50% with the exception of the heat equation which
only reaches 0.59%. This is consistent with Section 4.2
which suggests that the viscous or non-viscous HJ equa-
tions result in better smoothing than the heat equation.

7.3. CIFAR-10

We use the All-CNN-C network of Springenberg et al.
(2014) with batch-normalization after every convolutional
layer. We match the hyper-parameters of the original au-
thors and set dropout to 0.5 with a weight decay of 10−3.

Figs. 2b and 2c show the training loss and validation error
for the All-CNN network on the CIFAR-10 dataset. The
Hamilton-Jacobi equation (HJ) obtains a validation error
of 7.89% in 145 epochs and thus performs best among the
algorithms tested here; it also has the lowest training cross-
entropy loss of 0.046. Note that both HJ and Entropy-SGD
converge faster than SGD. The heat equation again per-
forms poorly on this dataset and has a much higher vali-
dation error than others (9.04%).

8. Discussion

Our results apply nonlinear PDEs, stochastic optimal con-
trol and stochastic homogenization to the analysis of em-
pirically successful algorithms for deep networks.

The first practical implication is that by solving the stochas-
tic control problem corresponding to the viscous Hamilton-
Jacobi PDE, we achieve a smaller expected loss as com-
pared to SGD. The improvement is an interpretable quan-
tity, it is the integral of the control along the optimal path.
The second is the equivalence of seemingly disparate meth-
ods such as Elastic-SGD and local entropy. This can help
the development of distributed algorithms. Furthermore,
our analysis provides insight into the choice of hyper-
parameters for these methods which is largely a black-art
in machine learning. For instance, the parameter γ in local
entropy and Elastic-SGD is equivalent to the time for the
PDE flow. The third is that our analysis suggests more effi-
cient algorithms, motivated by the fixed-point iteration for
the gradient of the non-viscous HJ equation. We thus sim-
plify Entropy-SGD and improve its performance in practice
and disentangle key parts of the original algorithm such as
scoping and thermal noise.

Conceptually, while simulated annealing and related meth-
ods work by modulating the level of noise in the dynamics,
our algorithm works by modulating the smoothness of the
underlying loss function. Moreover, while most algorithms
used in deep learning derive their motivation from the liter-
ature on convex optimization, the algorithms we have pre-
sented here are specialized to non-convex loss functions
and have been shown to perform well on these problems,
both in theory and in practice.

0 20 40 60 80
Epochs × L

0.5

0.6

0.7

0.8

0.9

1.0

%
Er

ro
r

Entropy-SGD
HEAT
HJ
SGD

(a) LeNet: Validation error

0 50 100 150 200
Epochs × L

0

0.2

0.4

0.6

f(
x)

0.046

Entropy-SGD
HEAT
HJ
SGD

(b) All-CNN: Training loss

0 50 100 150 200
Epochs × L

5

10

15

20

%
Er

ro
r

7.89%

Entropy-SGD
HEAT
HJ
SGD

(c) All-CNN: Validation error

Figure 2: Performance on MNIST and CIFAR-10

PDEs for deep neural networks

References
Baldassi, C., Borgs, C., Chayes, J., Ingrosso, A., Lucibello, C.,

Saglietti, L., and Zecchina, R. Unreasonable effectiveness of
learning neural networks: From accessible states and robust en-
sembles to basic algorithmic schemes. PNAS, 113(48):E7655–
E7662, 2016a.

Baldassi, C., Ingrosso, A., Lucibello, C., Saglietti, L., and
Zecchina, R. Local entropy as a measure for sampling solu-
tions in constraint satisfaction problems. Journal of Statistical
Mechanics: Theory and Experiment, 2016(2):023301, 2016b.

Baldassi, Carlo, Ingrosso, Alessandro, Lucibello, Carlo, Sagli-
etti, Lucibello, and Zecchina, Riccardo. Subdominant dense
clusters allow for simple learning and high computational per-
formance in neural networks with discrete synapses. Physical
review letters, 115(12):128101, 2015.

Bertsekas, Dimitri, Nedi, Angelia, Ozdaglar, Asuman, et al. Con-
vex analysis and optimization. 2003.

Bovier, A. and den Hollander, F. Metastability: A potential theo-
retic approach. In International Congress of Mathematicians,
volume 3, pp. 499–518, 2006.

Cannarsa, Piermarco and Sinestrari, Carlo. Semiconcave func-
tions, Hamilton-Jacobi equations, and optimal control, vol-
ume 58. Springer Science & Business Media, 2004.

Chaudhari, Pratik, Choromanska, Anna, Soatto, Stefano, LeCun,
Yann, Baldassi, Carlo, Borgs, Christian, Chayes, Jennifer, Sa-
gun, Levent, and Zecchina, Riccardo. Entropy-SGD: Biasing
Gradient Descent Into Wide Valleys. arXiv:1611.01838, 2016.

Chiang, Tzuu-Shuh, Hwang, Chii-Ruey, and Sheu, Shuenn. Dif-
fusion for global optimization in Rn. SIAM Journal on Control
and Optimization, 25(3):737–753, 1987.

Coates, Adam, Lee, Honglak, and Ng, Andrew Y. An analysis
of single-layer networks in unsupervised feature learning. Ann
Arbor, 1001(48109):2, 2010.

Evans, Lawrence C. Partial differential equations, volume 19 of
Graduate Studies in Mathematics. American Mathematical So-
ciety, 1998. ISBN 0-8218-0772-2.

Fleming, Wendell H and Rishel, Raymond W. Deterministic and
stochastic optimal control, volume 1. Springer Science & Busi-
ness Media, 2012.

Glasstone, Samuel, Eyring, Henry, and Laidler, Keith J. The the-
ory of rate processes. McGraw-Hill, 1941.

Gulcehre, Caglar, Moczulski, Marcin, Denil, Misha, and Bengio,
Yoshua. Noisy activation functions. In ICML, 2016.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv:1502.03167, 2015.

Krizhevsky, A. Learning multiple layers of features from tiny
images. Master’s thesis, Computer Science, University of
Toronto, 2009.

Kushner, Harold. Asymptotic global behavior for stochastic ap-
proximation and diffusions with slowly decreasing noise ef-
fects: global minimization via Monte Carlo. SIAM Journal on
Applied Mathematics, 47(1):169–185, 1987.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based
learning applied to document recognition. Proceedings of the
IEEE, 86(11):2278–2324, 1998.

LeCun, Yann, Bengio, Yoshua, and Hinton, Geoffrey. Deep learn-
ing. Nature, 521(7553):436–444, 2015.

Mobahi, Hossein. Training Recurrent Neural Networks by Diffu-
sion. arXiv:1601.04114, 2016.

Moreau, Jean-Jacques. Proximité et dualité dans un espace hilber-
tien. Bulletin de la Société mathématique de France, 93:273–
299, 1965.

Oberman, Adam M. Convergent difference schemes for degen-
erate elliptic and parabolic equations: Hamilton-Jacobi equa-
tions and free boundary problems. SIAM J. Numer. Anal., 44
(2):879–895 (electronic), 2006. ISSN 0036-1429.

Pavliotis, Grigorios A. Stochastic processes and applications.
Springer, 2014.

Pavliotis, Grigorios A and Stuart, Andrew. Multiscale methods:
averaging and homogenization. Springer Science & Business
Media, 2008.

Risken, Hannes. Fokker-planck equation. In The Fokker-Planck
Equation, pp. 63–95. Springer, 1984.

Robbins, Herbert and Monro, Sutton. A stochastic approximation
method. The annals of mathematical statistics, pp. 400–407,
1951.

Rockafellar, R Tyrrell. Monotone operators and the proximal
point algorithm. SIAM journal on control and optimization,
14(5):877–898, 1976.

Schmidt, Mark, Roux, Nicolas Le, and Bach, Francis. Conver-
gence rates of inexact proximal-gradient methods for convex
optimization. In NIPS, 2011.

Springenberg, J., Dosovitskiy, A., Brox, T., and Riedmiller,
M. Striving for simplicity: The all convolutional net.
arXiv:1412.6806, 2014.

Zhang, S., Choromanska, A., and LeCun, Y. Deep learning with
elastic averaging SGD. In NIPS, 2015.

	Introduction
	Background
	Stochastic gradient descent (SGD)

	PDE interpretation of local entropy
	Non-viscous Hamilton-Jacobi equation

	Derivation via homogenization
	Elastic-SGD as local entropy
	Heat equation vs. the viscous Hamilton-Jacobi equation

	Stochastic control interpretation
	Improvement in the value function

	Algorithmic details
	Entropy-SGD
	Non-viscous Hamilton-Jacobi (HJ)
	Heat equation
	Choosing hyper-parameters

	Empirical validation
	Setup
	MNIST
	CIFAR-10

	Discussion

